For the past couple of years (longer, actually), I've been thinking a lot about this business of static and dynamic typing in programming languages. Here's my current position on the matter.
Static and dynamic typing encourage and reward quite remarkably different approaches to the creation of software: everything from the nitty-gritty, (sit and think?)-edit-(compile?)-run-(test?)-(debug?)-(repeat?) cycle to the design (at all levels) of the software to be created, taking in every aspect of the tools and process used to support this design and implementation. Also, the choice of static or dynamic typing is best understood as part of a larger attitude towards development. Unfortunately, the use of a dynamic mindset with a static language not only means that you can't take advantage of the tools available (or even see why they'd be useful), it actively hinders success. The same is true for approaching a dynamic language with a static mindset.
I would therefore like to propose Pozorvlak's Conjectures:
A corollary is that if you ever finding yourself saying that your port of Feature X to Language Y is better than the original Feature X solely because it's (statically|dynamically) typed and the original Feature X was the other one, you should probably save your breath. It will probably also be worth your while to go back and determine what advantages the opposite choice of typing regimen gave to Feature X's users.
1 A less interesting, but probably valid conjecture is that you're also not testing enough, or at least testing the wrong things. But this can't be the only answer. Dynamic programmers, in general, are not idiots; they are usually also Lazy, in the good sense. They're smart enough to work out that writing the equivalent
Static and dynamic typing encourage and reward quite remarkably different approaches to the creation of software: everything from the nitty-gritty, (sit and think?)-edit-(compile?)-run-(test?)-(debug?)-(repeat?) cycle to the design (at all levels) of the software to be created, taking in every aspect of the tools and process used to support this design and implementation. Also, the choice of static or dynamic typing is best understood as part of a larger attitude towards development. Unfortunately, the use of a dynamic mindset with a static language not only means that you can't take advantage of the tools available (or even see why they'd be useful), it actively hinders success. The same is true for approaching a dynamic language with a static mindset.
I would therefore like to propose Pozorvlak's Conjectures:
- If you find that a modern dynamic type system causes more problems than it solves, you're probably doing it wrong.
- If you find that a modern static type system causes more problems than it solves, you're probably doing it wrong.
A corollary is that if you ever finding yourself saying that your port of Feature X to Language Y is better than the original Feature X solely because it's (statically|dynamically) typed and the original Feature X was the other one, you should probably save your breath. It will probably also be worth your while to go back and determine what advantages the opposite choice of typing regimen gave to Feature X's users.
1 A less interesting, but probably valid conjecture is that you're also not testing enough, or at least testing the wrong things. But this can't be the only answer. Dynamic programmers, in general, are not idiots; they are usually also Lazy, in the good sense. They're smart enough to work out that writing the equivalent
isa_ok()
test every time they would have written a type declaration in Java or whatever is no time-saver at all. Hence, they must need less type information overall for their code to be correct.Tags:
Re: static v. dynamic: why choose?